

M.B.M

MALACO BUILDING MATERIALS TRADING L.L.C

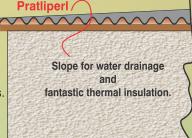
MALACO BUILDING MATERIALS TRADING

ENERGY EFFICIENT BUILDING

Pratliperl, when mixed with cement, produces an eco-friendly, ultra lightweight, thermally insulating & fireproof concrete.

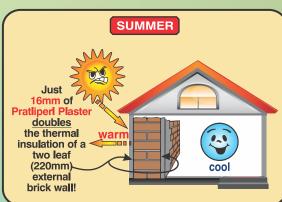
BENEFITS:

- Exceptional thermal insulation.
- Energy saving "green" product.
 Ultra lightweight; reduces high rise
- structural building costs.
- Nailable.
- Completely fireproof.
- Durable.
- Good acoustic properties.
- Easy to apply.
 May be gunited when applied to large surfaces (e.g. mine tunnels).


SOME EXAMPLES OF PRATLIPERL USAGE:

- Thermally insulating and fireproof wall plaster.
- Ultra lightweight concrete, bricks and boards.
- Underfloor insulation and insulated roof decks.
- Lightweight screeds on corrugated iron or concrete roofs.
- Fire proofing structural steel columns.
- Insulating industrial cryogenic tanks.
- Loose fill thermal insulation in wall cavities.
- Pizza oven liners.
- Lightweight tile adhesive filler.

Pratliperl Slope for water drainage and fantastic thermal insulation.



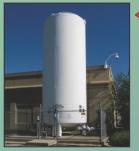
Thermally insulated fireproof Pratliperl roof

PROPERTIES:

Excellent Thermal Insulator - As a result of Pratliperl's low density and physical structure, it keeps your house warm in the Winter and cool in the Summer.

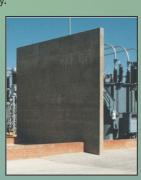
WINTER Just 16mm of **Pratliperl Plaster** doubles çool the thermal insulation of a two leaf (220mm) external brick wall!

- Resistant to Spalling Under fire conditions and, more severely, under water quench conditions (e.g. from a fire hose) following extreme heat, conventional concrete will spall and lose it's integrity. Pratliperl remains
- Superb Strength -Once cured, Pratliperl has superior strength when compared to ordinary lightweight concretes.
- Compatible with Cement and Other Binders -


Pratliperl mixed with cement (and many other binders) can produce ultra lightweight panels, boards, bricks and blocks that can be cut, nailed and

Non-toxic and Completely Environmentally Friendly.

Use Pratliperl to render your buildings


SANS 204 complient.

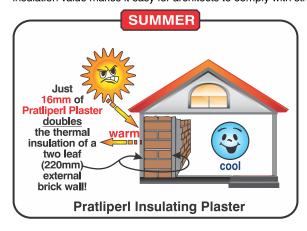
- During a Fire, Pratliperl Will Not Spall nor Release Smoke or Toxic Fumes.
- Exceptional Fire and Heat Resistance Can withstand temperatures up to 1250°C without losing it's structural integrity.

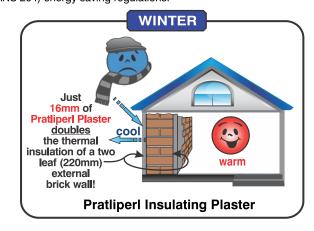
Pratliperl used to insulate Cryogenic tanks

> Fire Resistant Pratliperl wall between transformers

Pratliperl is a unique ultra lightweight and insulating material of volcanic origin, a deposit of which is found at only one location in South Africa and nowhere else. Unlike ordinary Perlite, Pratliperl is unique in that it is well suited for use with Cement. The reasons for this are twofold. Firstly: Unlike ordinary Perlites which are brittle and friable, Pratliperl has a tough surface structure. Secondly: Pratliperl is pre-treated with a special chemical, thereby rendering it compatible with ordinary Cements and additives. This leads to an absolutely unique 21st century eco-friendly lightweight building material that is both fireproof and thermally insulating.

During processing, ore is crushed to sugar grain size and passed through a specially developed furnace. The grains of Pratliperl volcanic glass soften and the water trapped within the structure turns to steam. The grains expand into a multitude of well-sealed lightweight glass beads. During this process, much of the water escapes by diffusion. The remainder is chemically re-absorbed into the glass structure. This loss of water alters the chemistry of the glass and significantly raises its melting temperature. Under the microscope, each lightweight tough bead comprises a froth of glass-walled closed cells, each enclosing a partial vacuum. **Expanded Pratliperl is best described as comprising millions of tiny sealed "vacuum flasks"; hence its absolutely unrivalled insulating and fireproofing properties.**


3 PROPERTIES



3.1. Excellent Thermal Insulator

Pratliperl has a conductivity (k) value in the loose state of 0.05 W/m.K. This is 20 times more insulating than sand! This property derives from the low density and the "vacuum flask" like structure of Pratliperl beads.

Just 16 mm of Pratliperl plaster each side gives the same thermal insulation as a double brick (220 mm thick) wall. This incredible insulation value makes it easy for architects to comply with strict (SANS 204) energy saving regulations.

3.2. Ultra Lightweight

Loose density is approximately 100 kg/m³ and, when mixed with cement, practical concrete densities range from 300 kg/m³ to 1100 kg/m³ depending upon the mix. **Concrete that floats on water!**

3.3. Exceptional Fire Resistance: 4 hour fire rating (see CSIR report page 9)

In addition to the almost refractory melting temperature of 1250°C, Pratliperl concrete also maintains its high temperature structural integrity via its incredible thermal insulation.

The latter ensures a very high thermal gradient on the heated surface during fire conditions, resulting in low temperatures immediately below the surface. Even if the surface melts, it coalesces into molten glass beads which continue to insulate and protect the interior.

3.3.1. Zero Smoke and Zero Fumes

Pratliperl releases no smoke or fumes during a fire. This property gives Pratliperl an advantage over expanded Polystyrene based insulation products which may give off harmful fumes.

3.3.2. Amazing Resistance to Spalling

Under fire conditions and, more severely, under water quench conditions following a fire, (e.g. from a fire hose) conventional concrete will spall and lose its integrity. Pratliperl exhibits no such tendency.

3.4. Compatible with Cement and Other Binders

Each Pratliperl particle has a well-sealed and tough bead structure. This ameliorates bead damage during mixing and facilitates low water adsorption and proper curing of the cement. Pratliperl supplied in the red labeled bag has been pre-treated during production rendering the Pratliperl compatible with cement.

3.5 Superior Strength

Ordinary lightweight concretes are typically weak. Aerated concrete is also susceptible to total slump shortly after casting, especially if any vibration or disturbance like passing traffic is present. Pratliperl concrete does not rely on air-entrainment and can be cured under any conditions of vibration. Once cured, it exhibits superior strength when compared to other lightweight concretes. Strength varies with density, but practical strengths in the range of 1.5 MPa up to 15 MPa are possible. This is nearly double the strength of aerated concrete of similar density.

LABORATORY STRENGTH RESULTS FROM "PORTLAND CEMENT INSTITUTE"								
Mix Ratio (By volume)	3	: 1	4.5	: 1	6	: 1	10	: 1
Praliperl : Cement	Mix Ratio		Mix Ratio		Mix Ratio		Mix Ratio	
Water Quantity	Low Water Mix	High Water Mix	Low Water Mix	High Water Mix	Low Water Mix	High Water Mix	Low Water Mix	High Water Mix
7 -day ISO comprehensive strength (Mpa)	14.2	5.0	12.6	5.2	3.9	2.3	N/A	N/A
28 -day ISO comprehensive strength (Mpa)	19.8	7.5	16.9	6.3	4.4	2.9	N/A	N/A
Dry density (kg/m³)	1100	900	800	650	550	450	360	350

3.6. Non-Toxic Dust

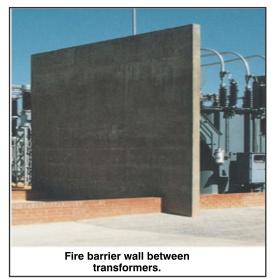
Although no dust is healthy, due to its amorphous structure. Pratliperl is classified as a low health-risk dust.

3.7. Ultra Smooth Plaster Finish

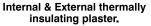
An ultra smooth plaster finish can be obtained just by steel trowel floating. No gypsum or finishing plaster is necessary.


TYPICAL APPLICATIONS

- Plaster: Internal & External thermally insulating.
- Lightweight Floors: High rise buildings.
- Roof Decks: Thermally Insulating.
- Fire Barriers: Fire seals and walls.
- Pre-cast Mouldings: eg. flower pots.
- Fireproofing: Tunnels in mines etc.
- Screeds: Lightweight and thermally insulating.
- Bathtubs: Insulation below.
- Under Floor Heating: Insulation below elements.
- Tile Adhesive Filler: Lightweight.
- Bricks and Boards: Ultra-lightweight concrete.
- Pizza Oven: Liners.
- Cryogenic tanks: Insulating.
- Loose Fill: thermal insulation.
- Paint texturing agent.
- Refractory cements.
- Molten Metal: Insulating surface.




Thermally Insulating roof decks.


TYPICAL APPLICATIONS

Computer server room plastered with Pratliperl to reduce energy requirements for cooling.

Insulating Cryogenic tanks. (Special Grade 45 Pratliperl required)

5

HOW TO MIX PRATLIPERL WITH CEMENT

1. Cement Type

For Pratliperl Plaster, use a reputable multipurpose cement. Screed mixes must be produced using either a 42.5 Mpa or 52.5 Mpa cement.

2. Mix Ratios

All mixing ratios are volume based!

3. Tip

The volume of a Pratliperl bag = ± 100 Litres. The volume of a Cement bag (Pocket of Cement) = ± 33 Litres.

A 3:1 mix may therefore be achieved by mixing
1 bag of PratliperI with 1 pocket of cement.

1 Bag
1 Pocket

Cement
1 Bag
1 Pocket
1 Bag ± 100ℓ

Similarly a 4.5:1 mix may be achieved by mixing 3 bags of Pratliperl with 2 pockets of cement.

4. Mixing

Automated mixing is recommended and a pan mixer is preferred. Drum mixers can sometimes cause the formation of balls. This phenomenon results from Pratliperl's ultra light weight. Where automated mixing is not possible, mixing small quantities with a shovel is very effective.

4.1. In both automated and manual mixing, it is essential that the Pratliperl and cement are mixed in a dry state before adding any water. This ensures uniform mixing of the cement powder and Pratliperl beads. Adequate mixing is indicated by a uniform light grey colour throughout the dry mix.
Only once the dry mix is thoroughly blended, should water be added.

4.2. Once the Pratliperl and cement have been thoroughly mixed, the recommended water volumes must be added (see tables 1 to 4 on the mix ratio chart below). When compared to ordinary concrete, the mix may appear dry. This is completely normal. It is important to monitor the amount of water added since small variances in water have a significant effect on the overall consistency and slump. Do no overdo mixing; approximately 30 seconds in a pan mixer is sufficient.

4.3. Yield

Approximately 11 bags of Pratliperl will be required for each cubic meter of screed/plaster. This value is valid for all Pratliperl mix ratios and accounts for compaction and slight spillage. For more accurate yields, **refer to tables 1 to 4 on the mix ratio chart.**

PRATLIPERL MIX RATIO CHART

TABLE 1.	3:1 MIX RATIO (BY VOLUME)				
3 : 1 Volume Mix Ratio Recommended Uses	Mix Ratio	PRATLIPERL	Cement	Water May vary with cement type	Approximate Compacted Volumetric yield
External Plaster, Internal Plaster, Built Up Floors, Insulating Roof Decks, Fire Seals, Castables, Spray Applications.	Pratliperl : Cement 1 Bag : 1 Pocket	~1 Bag ± 100ℓ	~1 Pocket ± 33ℓ	Litres for Screed = 25-30 Litres for Plaster = 28-37 DON'T USE	± 0.093m³
Underfloor Heating Insulation. Lightweight Screeds (High Strength).	3 : 1 Mix Ratio by Volume	1 Bag = 10 Kg's = ± 100 Litres	1 Bag = 50 Kg's = ± 33 Litres	Water TOO MUCH WATER	

TABLE 2.	4.5:1 MIX RATIO (BY VOLUME)				
4.5 : 1 Volume Mix Ratio Recommended Uses	Mix Ratio	PRATLIPERL	Cement	Water May vary with cement type	Approximate Compacted Volumetric yield
External Plaster, Internal Plaster, Built Up Floors (Light Loads), Insulating Roof Decks (No Heavy Loads), Fire Seals. Castables (Medium Strength).	Pratliperl : Cement 3 Bags : 2 Pockets	Account to the second	~1 Pocket ± 33ℓ Cement Cement	Litres for Screed = 58-72 Litres for Plaster = 74-93 DON'T USE	± 0.280m³
Spray Applications. Lightweight Screeds (Medium Strength).	4.5 : 1 Mix Ratio by Volume	3 Bags = 30 Kg's = ± 300 Litres	2 Bags = 100 Kg's = ± 66 Litres	Water TOO MUCH WATER	

TABLE 3.	6:1 MIX RATIO (BY VOLUME)				
6 : 1 Volume Mix Ratio Recommended Uses	Mix Ratio	PRATLIPERL	Cement	Water May vary with cement type	Approximate Compacted Volumetric yield
Fire Seals. Castables (Low Strength). Spray Applications.	Pratliperl : Cement 2 Bags : 1 Pocket	~1 Bag ± 100ℓ	~1 Pocket ± 33ℓ	Litres for Screed = 39-45 DON'T USE TOO MUCH	± 0.186m³
	6 : 1 Mix Ratio by Volume	2 Bags = 20 Kg's = ± 200 Litres	1 Bag = 50 Kg's = ± 33 Litres	WATER WATER	

TABLE 4.		10 : 1 MIX RATIO (BY VOLUME)			
10 : 1 Volume Mix Ratio Recommended Uses	Mix Ratio	PRATLIPERL	Cement	Water May vary with cement type	Approximate Compacted Volumetric yield
(Low Strength) (Reenterable) Fire Seals. Castables (Low Strength Very Light Reenterable) Insulation Between Cavity Wall.	Pratliperl : Cement 7 Bags : 2 Pockets		~1 Pocket ± 33ℓ Cement Cement	Litres for Screed = 134-170 DON'T USE TOO MUCH WATER	± 0.651m ³
	10 : 1 Mix Ratio by Volume	7 Bags = 70 Kg's = ± 700 Litres	2 Bags = 100 Kg's = ± 66 Litres		

APPLICATION PROCEDURES:

A. PRATLIPERL PLASTERING PROCEDURE (See www.youtube.com/PratleySA)

- **6.1. Surface Preparation:** As with any plaster application, the substrate surface must be thoroughly prepared before the plaster is applied. Poor surface preparation leads to poor adhesion between the plaster and the substrate. The following surface preparation steps are recommended.
 - Step 1. Ensure that the surface of the substrate is strong, clean and free of loose material. Dust, oil, mould, and any material that could hamper adhesion must be removed from the substrate surface. This may be achieved using a high-pressure hose, steel brush, hard-bristled broom, vacuum cleaner or high pressure compressed air (oil free). Applying plaster directly onto a smooth, previously painted surface is not recommended. Should this be a requirement, it is recommended that the painted surface be roughened to a point where the substrate surface has a texture of "coarse sand paper". This may be achieved by either chipping the surface with a hammer or shot blasting the surfaces. For steps on plastering and preparing smooth surfaces such as concrete monolithic structures or hard clay face bricks, refer to section 6.2 (Plastering Smooth Surfaces Such as Monolithic Concrete).
 - **STEP 2.** To ensure a uniformly thick plaster layer, ensure that there are no high or low points on the substrate surface. Any high spots which exceed approximately 10mm from the level of the main substrate plane should be chopped down.
 - STEP 3. The absorptive characteristics of the substrate surface is an important factor to consider when applying any plaster. Water repellant surfaces such as monolithic concrete, or hard clay face bricks tend to have less adhesion between plaster and substrate. These require special surface preparation techniques described in section 6.3 (Plastering Smooth Surfaces such as Monolithic Concrete). Substrates can generally be classified into 3 absorption classes, each of which requires different surface preparation techniques to control the amount of water absorption. A simple technique used to determine which class your substrate falls into is to throw some water onto the surface. Based on the absorption rate of the water, the following procedures should be applied (see table below)

Substrate Absorption Class	Water Absorption Result	Surface Preparation Procedure		
CLASS I	No Water Absorbed	Refer to Section 6.3 (Plastering Smooth Surfaces such as Monolithic Concrete)		
CLASS II	Little Water Absorbed	Other than items listed in step1 , no further preparation required		
CLASS III Lots of Water Absorbed		Saturate surface with Water at leas 1 hour before plaster application. As soon as substrate surface appears dry apply Pratliperl Plaster. The materia immediately behind the surface wil still be saturated.		

6.2. Plastering Normal Surfaces

- **STEP 1.** Unlike ordinary plaster application methods, where the plaster is typically "thrown" onto the wall, Pratliperl plaster is forcefully smeared onto the wall with a float trowel using an upward motion. Pratliperl plaster is very light and has less inertia than ordinary "sand plaster mixes" if thrown onto the wall. Smearing the plaster upwards with pressure ensures a good bond and minimizes the possibility of air being trapped between the wall and the plaster.
- **STEP 2.** Allow the plaster to dry **for at least an hour** before applying a straight edge. A good check is to try and indent the plaster using your thumb. It should only be possible to apply a small dent to the Pratliperl plaster. Should a large dent occur, more time must be given before applying a straight edge. Failure to do this will result in "smiley face" delamination.
- STEP 3. Once leveled, the plaster may be floated using a steel or wooden trowel.
- **STEP 4.** Steel floated Pratliperl produces an extremely smooth finish. The application of a gypsum based finishing plaster is therefore unnecessary. Do not over float the plaster as this will result in surface defects and surface hairline cracks.
- **STEP 5.** As with ordinary plaster, Pratliperl plaster should be kept moist for at least 3 days after application (7 days recommended). The plaster should not be allowed to dry in direct sunlight or drying winds. Cement within any plaster that dries too quickly does not have sufficient time to hydrate, resulting in brittle plaster and cracks.

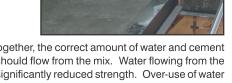
6.3 Plastering Smooth Surfaces such as Monolithic Concrete

As with ordinary plasters, it is essential that smooth surfaces be thoroughly prepared before applying Pratliperl Plaster. Proper surface preparation is crucial as this will improve adhesion between the Plaster and the smooth substrate. The following preparation steps are recommended.

- STEP 1. Ensure substrate surface is free from any loose material.
- **STEP 2.** Remove any mould or plant growth from the substrate surface.
- STEP 3. Apply a spatter dash coating or fasten a wire mesh to the substrate. A suitable spatter dash may be produced by mixing one-part cement with one and a half parts of coarse Sand. To further improve adhesion, Pratley Platergrip primer (product code 99031) may be added into the mix. The consistency of the mix should be a "thick pourable" consistency. After application, the spatter dash coating must have a rough texture. Once dry, test the adhesion of the spatter dash to the substrate using a steel trowel. If suitable adhesion is found, apply Pratliperl plaster onto the spatter-dash using standard Pratliperl plastering techniques. Described in section 6.2.

6.4 Plastering Pratliperl to a Thickness Greater than 16mm.

Should there be a need to apply Pratliperl plaster in sections greater than 16mm, the following steps are recommended.


- STEP 1. Apply the first layer of PratliperI plaster using standard PratliperI Plastering techniques (see section 6.1). Ensure the substrate surface has been cleaned and no loose material is on the wall. For smooth surfaces, refer to the section of this catalogue which deals with plastering smooth surfaces and monolithic concrete (section 6.3).
- STEP 2. Once the first 16mm layer is ready to be straight edged, roughen the surface using a trowel. Scratching the plaster surface in a cross-hatch pattern approximately 5mm deep will promote adhesion of the subsequent layer. Keep plaster wet for 3 days before applying the second layer.
- STEP 3. Again, using standard Pratliperl Plastering techniques apply the second layer of plaster to a thickness of 16mm. Continue with steps 2 and 3 until the desired plaster thickness is achieved.

B. PRATLIPERL SCREEDING PROCEDURE

- 1. For lightweight screeds, a 3:1 (Pratliperl to cement) volume mix ratio is recommended. This may be achieved by mixing one bag of Pratliperl with one bag of cement.

 Ensure the surface to be topped is clean and free from any oil, loose dust or particles.

 Prior to screeding, smooth surfaces should be painted with Pratley Plaster-Grip Primer.
- This ensures good adhesion. (Pratliperl screeds can even be applied to smooth steel/ galvanised roofs with the use of Pratley Plaster-Grip Primer). The Pratley Plaster-Grip Primer must not be dry completely and should still be tacky when the screed is applied. NOTE:- To prevent "chalking" surface temperatures above 10°C (preferably 15°C) degrees are essential when using Pratley Plaster-Grip Primer.
- Use a mix ratio and water content per chart on page 5. (Use lower limit of water) Note:- The mix must appear to be very dry.

- 5. Using your hands, form a ball with the Pratliperl Screed mix. If the mixture binds together, the correct amount of water and cement has been used. When the mixture is compressed between your hands no water should flow from the mix. Water flowing from the mix indicates that too much water has been added and the Pratliperl mix will have significantly reduced strength. Over-use of water can be rectified by adding the applicable ratio of dry cement/Pratliperl into the mix. Remember to always premix the dry cement/PratliperI mix before exposing it to water.
- Pack the screed onto the surface and compact by tamping (It should not flow). When casting thick sections, it is recommended that the screed be compacted (tamped) in sections of 100mm. To achieve maximum compressive strength adequately compact the entire screed. Screeds having a thickness less than 50mm are not recommended.
- Once compacted, level with a straight edge and smooth using a wooden or steel trowel.
- If the Pratliperl surface is to be tiled, a wooden float or broom finish is recommended.
- Following application, the Pratliperl screed should be kept wet for at least 3 days (7 days recommended). Direct sunlight and drying winds must be avoided during curing. Drying under plastic is by far the most preferred method.
- 10. The screed must be dry and fully cured before applying ceramic tiles, paint, Bitumen and the like. (This is essential!)
- 11. For screeds where water penetration is not acceptable, a waterproofing layer on top of the Pratliperl screed is recommended.
- 12. Where PratliperI screeds are used between parapet walls, it is recommended that expansion joints be used.
- 13. In high traffic areas where there is a possibility of point loading eg. (trolleys wheels, heavy equipment, etc), a hard-wearing layer on top of the Pratliperl Screed is recommended. Typical hard wearing surfaces include tiles and laminated flooring.

C. PRATLIPERL GUNITING PROCEDURE

Lower air velocities are used than those used when applying ordinary concrete. Lower velocities minimize rebound and reduce waste. Pratliperl rebound can however be put back into the gunite machine and re-used. A more cohesive mix is obtained by using a fly ash rich cement. This is recommended.

D. PRATLIPERL AS A LOOSE FILL

Wall cavities can be filled with Pratliperl to enhance the thermal insulation. When using Pratliperl as a loose fill, "Pratliperl Loose Fill" supplied in a black labelled bag must be ordered (product code 99020). For other applications requiring cement, Pratliperl in red labelled bag (product code 99031) must be used. Pratliperl in the red labelled bag has been treated with a chemical which makes it compatible with cement.

PRATLIPERL ENERGY SAVINGS

PRATLIPERL, REDUCES ENERGY COSTS AND SAVES YOU MONEY

Thermal Properties:

A material that insulates well has a low "k" value (conductivity value). Pratliperl plaster insulates extremely well and therefore has a very low "k" value. "k" has the units : W/m°C

Where: W = Watts

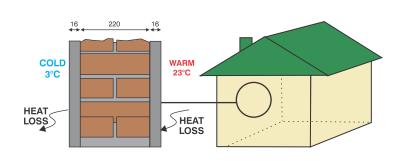
°C = Degree Celsius (same as degrees Kelvin)

A wall material with a "k" value of say 0.8W/m°C would by definition conduct 0.8 Joules of heat energy per second through every square meter of a wall which is 1m thick and where the temperature difference across the wall is 1°C. The typical k values for common brick, ordinary plaster and Pratliperl plaster are given below.

Typical k Value
0.84 W/m°C
0.80 W/m°C
0.12 W/m°C

Example of Energy Saving

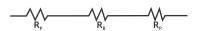
Consider a 4m x 4m room with 220mm double leaf brick walls. For comfort the inside temperature is kept at 23°C using heating. Assume the outside air temperature is a wintery 3ºC.

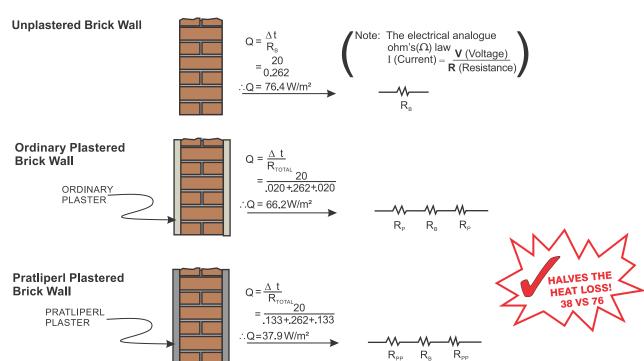

For ease of calculation the convective heat transfer on the wall surface has been neglected. Similarly windows and doors have been neglected.

The thermal resistance of the Brickwork is

The thermal resistance of the Plaster is

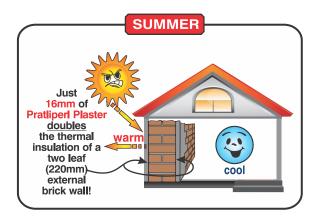
The thermal resistance of the Pratliperl Plaster is

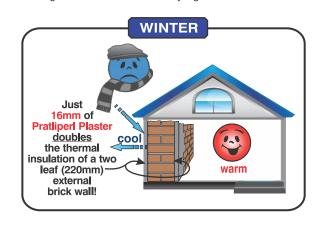

The electrical analogue for the plastered wall is:


$$R_B = \frac{BRICK THICKNESS}{BRICK CONDUCTIVITY} = \frac{0.220}{0.84} = 0.262$$

$$= \frac{\text{PLASTER THICKNESS}}{\text{PLASTER CONDUCTIVITY}} = \frac{0.016}{0.80} = 0.020$$

$$R_{pp} = \frac{PLASTER\ THICKNESS}{PRATLIPERL\ PLASTER\ CONDUCTIVITY} = \frac{0.016}{0.12} = 0.133$$


Calculating the Heat transfer we get:



The PratliperI Plaster DOUBLES the thermal insulation of the wall and HALVES the heat loss!

For our 4m x 4m room (with 40m2 of walls) this is a saving of 1.54 Kw. Assuming electricity costs R2.00 / Kw hr this is a saving of R73.92 / DAY!

If the floor screed was Pratliperl and the roof was insulated further savings would be achieved. (*: If the convective heat transfer coefficient were accounted for the % of saving would be less but still very significant.

APPENDIX A - PRATLIPERL TEST REPORTS

The pages of this Appendix comprise summaries of official test reports issued by:

- 1. CSIR (Council for Scientific and Industrial Research)
- SABS (South African Bureau of Standards)
- 3. PCI (Portland Cement Institute now the Cement and Concrete Institute)
- 4. *COMRO (Chamber of Mines Research Organisation) Now CSIR Mining Tech.

Reports:

CSI

The Fire Properties of Pratliperl Panels Hydrocarbon Fire Tests (and Fire Resistance on Cable Penetration). SABS

Fire exposure Tests on Protected Steel Columns (2500mm x 200mm x 150mm). SABS

- Thermal Conductivity Tests. SABS

SABS Surface Fire Index on PratliperI.

 Non-Combustibility Test on Pratliperl. SABS - Evaluation of "Pre-treated Pratliperl". PCI

*COMRO— Heat Gain Measurements on Pratliperl Insulation Systems.

1. CSIR TEST REPORTS

CSIR - THE FIRE PROPERTIES OF PRATLIPERL PANELS

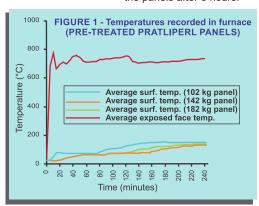
A summary of a report undertaken by The Division of Building Technology, CSIR follows (the complete report is available for inspection upon request).

Procedure: Three large panels (3 m x 1 m x 75 mm, masses 102 kg, 142 kg, and 182 kg respectively) consisting of Pratliperl aggregate with portland cement binder applied over "Space-frame" reinforcing cage were tested for non-combustibility (SABS 0177: Part 5), determining suitability as a transformer fire shield and for fire resistance, using the standard time-temperature mode.

Hose stream application after one minute.

Condition of panels after application of hose steam.

Slight inwards dashing of the panels after 3 hours.


Results:

Non-combustibility -

Temperatures recorded are presented in Figure 1.

Transformer Fire Shield Test

The maximum deflection, in the form of slight inwards (into the furnace) dishing was 15 mm in the centre of the panels. This slight dishing after 3 hours exposure can be seen in the enclosed photographs. The condition of the fire-exposed face of the panels immediately after the test and after shock-quenching can also be seen in the enclosed photographs. The fire-exposed surfaces of the panels showed only surface cracking, with none of the cracks extending through the thickness of the panels. There were no signs of spalling and the panels were strong enough to be removed from the furnace frame without the panels disintegrating.

CSIR - THE FIRE PROPERTIES OF PRATLIPERL PANELS

Results:

Fire Resistance

Average temperature on cold face of panel after 2 hours fire-exposure = 70°C.

Furnace temperature = 1 055°C.

Calculations indicate that a 75mm thick panel made of Pratliperl with a density of 1 000 kg/m³ will have a fire-resistance of at least 4 hours, as a non-loadbearing element.

- Pratliperl is non-combustible and liberates no smoke or toxic gas on exposure to fire.
- Unlike normal concrete panels, PratliperI panels with "Spaceframe" reinforcing do not spall and deflect only slightly on exposure to fire. Heat-flow through these panels is substantially less than through normal concrete of equivalent thickness.
- The panels also did not disintergrate or spall explosively when subjected to a hose stream when hot, like ordinary concrete panels do.

Fire shields constructed of Pratliperl panels will effectively protect adjacent equipment such as transformers from radiation and conducted heat from a transformer oil fire for periods of at least 4 hours. When used as a non-loadbearing element in buildings or for other applica-

tions, a fire-resistance rating of at least 4 hours can be allocated to 75mm thick panels with a density of 1000 kg/m³.

(2. SABS TEST REPORTS)

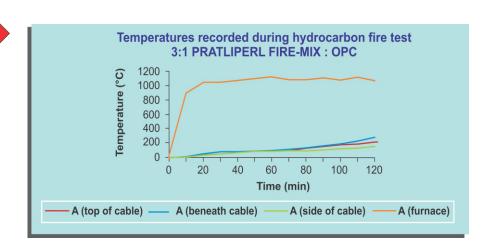
SABS - HYDROCARBON FIRE TESTS

A summary of reports undertaken by SABS, 20 June 1991 [Ref. 19/03/21/07; Report Nos 653/82280/H3723/A, B, C, D, E] follows (the complete reports are available for inspection upon request).

A series of tests was conducted to evaluate samples for cable protection in high risk fire areas.

Test Procedure:

A cable tray was installed in the removeable wall of a vertical furnace, extending approximately 800mm horizontally into the furnace. A cable length was installed in the tray in such a manner to form a loop. The cable tray was filled with a 3:1 Pratliperl plaster mix. Thermocouples were attached to the cable, one to the top of the cable, one underneath the cable and one to the side of the cable. The compositions described were exposed in the vertical furnace, in accordance with the procedures described in SABS 0177II. During the test, a 220V electrical current was passed through two conductors of the cable. The current was used to glow an electric light bulb. The time at which the bulb failed to glow was recorded. The temperature/time curve recorded was the hydrocarbon fire curve, also known as the "Mobile Fire Curve".



Sample	Minimum Cover Thickness (mm)	Time Taken by Light Bulb to Stop (min)
3:1 Pratliperl fire-mix : OPC	35	103

Table 1: results of Hydrocarbon Fire tests

Remarks:

The exposure of materials to a simulated hydrocarbon fire (Mobile Fire Curve) is a method to study the behaviour of materials under defined fire conditions. The designer of a specific construction can use the information obtained to decide on the parameters to be specified for specific applications.

SABS - FIRE EXPOSURE TESTS ON PROTECTED STEEL COLUMNS

A summary of reports undertaken by the SABS, 15 July 1991 [Nos 653/82280/h3724 and H3725] follows (the complete reports are available for inspection upon request).

Sample:

Standard H Section Steel Columns, 2 500 mm x 150 mm, with an average flange thickness of 15mm and a weft thickness of 10 mm were protected as follows:

- The steel surface was treated with Pratley Plaster Grip Primer.
- A layer of plaster material, 30 mm thick, was applied to the column.

5:1 Pratliperl : OPC

3:1 Pratliperl: OPC

Nature of Tests:

The tests were conducted in a vertical furnace in accordance with procedures described in code of practice SABS 0177-II

Observations and Remarks:

A 5:1 PratliperI : OPC: At the end of the 120 min test procedure, the average steel temperature

was temperature of 314°C (furnace temperature 1046°C)

B 3:1 Pratliperl: OPC: At the end of the 120 min test procedure, the average steel temperature was 364°C and a single

highest point reached a temperature of 384°C (furnace temperature 1050°C

SABS - THERMAL CONDUCTIVITY TESTS

A summary of reports undertaken by SABS, 5 August 1996 [Nos 722/82402/4249] follows (the complete reports are available for inspection upon request).

Method of Testing:

Samples A-D were tested on a Heat Flow Meter Apparatus in accordance with ASTM C518.

Table 1: Results of Thermal Conductivity Tests

SAMPLE	MEAN TEMP. (°C)	MIX RATIO (Pre-treated Pratliperl:Cement)	NORMAL DENSITY (kg/m³)	THERMAL CONDUCTIVITY (W/m.K)
А	25.5	3:1	770	0.15
В	25.3	4.5:1	670	0.13
С	25.3	6:1	480	0.12
D	25.3	10:1	360	0.09

SABS - SURFACE FIRE INDEX TEST ON PRATLIPERL.

A summary of a report undertaken by the SABS, 16 October 1987 [Nos 653/81590/D2462] follows (the complete report is available for inspection upon request).

Sample:

Boards made of 5:1 Pratliperl: Cement

Nature of Test:

Tests to establish the surface fire index were carried out in a tunnel furnace according to SABS 0177: Part III.

Results:

Spread of flame index
Heat contribution index
Smoke emission index

Class

O

Class

SABS - NON-COMBUSTIBILITY TEST ON PRATLIPERL

A summary of a report undertaken by the SABS, 16 October 1987 [Nos 653/81590/D2463] follows (the complete report is available for inspection upon request).

Sample:

Blocks made of 1:5 cement: Pratliperl.

Nature of Test:

Tests to determine the non-combustibility of the material were carried out in a furnace according to SABS 0177: Part V.

Results: The sample was found to be non-combustible.

3. PORTLAND CEMENT INSTITUTE REPORTS

PORTLAND CEMENT INSTITUTE - EVALUATION OF PRATLIPERL

A summary of a report produced by the PCI, 30 March 1992 [Ref. 984/94NPD/jaf] follows (the complete report is available for inspection upon request)

A series of tests was conducted to evalute Pre-treated Pratliperl. These included strength tests and limited shrinkage tests on nominal 3:1, 4.5:1, 6:1 and 10:1 (volume) mixes covering a range of consistence between 40 mm slump and 120 mm slump. In the list of tests which follow, the test procedure adopted is shown in parenthesis.

- 7-day and 28-day compressive strength on water- and air-cured specimens (SABS Method 863)
- Permeability tests at 28 days (DIN 1048)
- Wet density (100 mm cube specimens, weighing immediately after demoulding).
- Dry density and rate of moisture loss (weighing, to constant mass, 100 mm cube specimens air-dried and in a drying oven between 100°C and 110°C).
- · Initial drying shrinkage (SABS Method 836).
- Wetting expansion (SABS Method 836).
- Slump (PCI TM 6.2)
- Flow (SABS Method 862-2)
- Air content (SABS Method 1252)
- Water retentivity (BS 4551)
- Consistence retentivity (BS 4551)
- ISO flexural and compressive strength (EN 196)
- · Modulus of elasticity (PCI TM 7.6)
- · Assessment of "plasterability" of each mix.

3. PORTLAND CEMENT INSTITUTE REPORTS

PORTLAND CEMENT INSTITUTE - EVALUATION OF PRATLIPERL

(Also see page 11)

COMMENTS

General

- The water: cement (W:C) ratio is very important. It was considered better to measure
 properties over a range of water contents
 rather than a range of slumps, since consistence achieved was dependent on mixing time.
- The water requirement is fairly consistent over a wide range of aggregate: cement ratios.
 Water should be added slowly during mixing over a period of time to activate the admixture in case the required slump is exceeded.

Compressive Strength

- For richer mixes, water content had a large influence on the resultant consistence, compressive strength and flexural strength. Its influence diminished as the aggregate: cement ratio increased. The compressive strengths achieved were well above average for a lightweight mortar using OPC.
- Relationship between 7-day and 28-day strengths are normal for standard-cured specimens.
- Specimens dry-cured for 28 days yielded strengths approximately 70% of standard-cured specimens. At 7 days there was virtually no difference.
- Results of ISO tests follow a similar pattern.

Density

- Wet densities varied from approximately 700 kg/m³ to 1 100 kg/m³. Dry densities varied from approximately 300 kg/m³ to 800 kg/m³.
 - Graphs showing the rate of moisture loss are shown in Figure 1.
- Specimens were virtually dry in 24 hours at 100°C (oven drying). Specimens took longer than two weeks to dry (Figure 1) when air-dried under favourable drying conditions (22,5°C, RH<50%). No micro-cracking was observed for both methods.

Permeability

- According to DIN 6.5.72 a concrete with thickness of 100-400mm will be waterproof if maximum penetration is not >50mm. Further, the W:C ratio should not be >0.6.
- The 3:1 mix was deemed watertight. This may be partially due to the mix having a W :C ratio of 0.57 and partially due to the high air content (18.5%).
- The 4.5:1 mix was not tested.
- The 6:1 mix was not watertight. Very little water passed through at 1 bar pressure but this increased significantly when pressure was increased to 3 bars.
- The 10:1 mix was not watertight.

Initial Drying Shrinkage and Moisture Movement

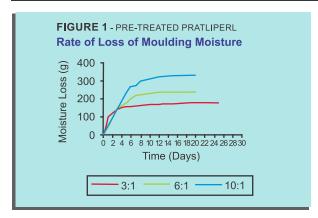
- The shrinkage values are relatively low for lightweight mortar .
- The shrinkage values are only slightly affected by change in consistence but significantly affected by change in cement content.
- · Wetting expansion values are above average for conventional aggregate but are quite normal for lightweight aggregate.

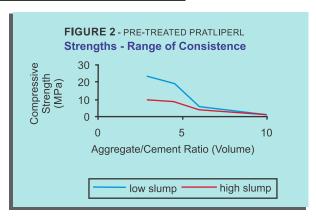
Slump Testing

If slump tests are not done quickly, water bleeds from the base of the slump cone, leaving a mortar with poor flow properties.
 This leads to anomalous slump readings, especially for the 10:1 mixes. In these situations the flow test is considered a better test.

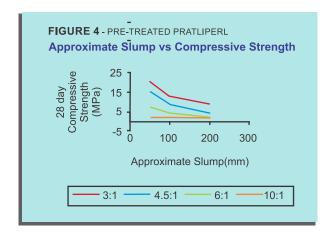
Air Content

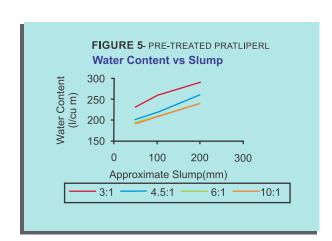
- · The measured air content increased with increasing consistence and with decreasing cement content.
- Mostly, air contents were in the order of 20%. Notable exceptions were the rich 3:1 mixes, particularly at the drier consistence.


Water and Consistence Retentivity


- BS 4551 recommends that, when masonry cement is used, water retentivity should be between 70% and 95%. The European standard for masonry cement (EN 413-1) specifies that water retentivity should fall between 80 and 95%. PCI believes that for good workability the value should fall between 85 and 95%.
- Water retentivity, for 3:1 and 4.5:1 mixes, was considered satisfactory. It was considered borderline for the 6:1 mix and poor for the 10:1 mix.

Plasterability


- . The ability to successfully plaster with the various nominal mixes is in line with the measured and observed water retentivities.
- The 3:1 and 4.5:1 mixes could be used for plaster without difficulty. The 6.1 mix could be used for plaster but the mix lacked adequate cohesion. The 10:1 mix was unsuitable for plastering.


PORTLAND CEMENT INSTITUTE - EVALUATION OF PRATLIPERL

